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SUMMARY 
Relaxation-based multigrid solvers for the steady incompressible Navier-Stokes equations are examined to 
determine their computational speed and robustness. Four relaxation methods were used as smoothers in 
a common tailored multigrid procedure. The resulting solvers were applied to three two-dimensional flow 
problems, over a range of Reynolds numbers, on both uniform and highly stretched grids. In all cases the L2 
norm of the velocity changes is reduced to in a few lo’s of fine-grid sweeps. The results of the study are 
used to draw conclusions on the strengths and weaknesses of the individual relaxation methods as well as 
those of the overall multigrid procedure when used as a solver on highly stretched grids. 
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1. INTRODUCTION 

In recent years there has been considerable progress in the development of multigrid solvers for 
the steady incompressible Navier-Stokes equations. Multigrid methods are attractive for this 
system because of their ability to give grid-independent convergence rates as the number of grid 
points is increased to large values in a fixed domain. Large numbers of points are commonly 
required in the solution of practical problems. The multigrid process and its application to fluid 
dynamics has been well described by Brandt.’ F u ~ h s ’ , ~  examined the smoothing properties of 
different relaxation schemes as well as the effect of stretched grids on multigrid performance. Ghia 
et aL4 used the streamfunction-vorticity formulation with the coupled strongly implicit scheme of 
Rubin and Khosla’ as a smoothing operator and an accomodative multigrid cycle. Defect 
correction was used to increase the accuracy of the convection terms. Their results for the driven 
cavity problem are taken as the standard today. Vanka6 employed a locally coupled 
Gauss-Seidel smoother for the primitive variable formulation together with an accomodative 
cycle. Demuren’ extended Vanka’s smoother to one in which local corrections were coupled to 
neighbouring pressure corrections and solved the resulting equations by both a strongly implicit 
technique and an alternating direction line GaussSeidel scheme. Thompson and Ferziger* used 
Vanka’s smoother as well as a fully coupled alternating direction line Gauss-Seidel extension 
again with an accomodative cycle. This study also introduced defect correction together with 
local adaptive grid refinement. Sivaloganathan and Shaw9 used the SIMPLE pressure-correction 
scheme of Patankar and Spalding’O as a smoother for the primitive variable formulation. The 
smoothing analysis given in Shaw and Sivaloganathan” indicates that a fixed V-cycle was used 
in the multigrid process. Dick” developed a partially flux-split discretization for the primitive 
variable formulation and used a coupled red-black smoother and a fixed W-cycle. Finally, a few 
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solvers have used boundary-fitted curvillinear co-ordinates with primitive variables. Joshi and 
Vanka13 extended Vanka's coupled Gauss-Seidel relaxation technique to this system. RaynerI4 
and Shyy et ~ 1 . ' ~  developed variants to the SIMPLE pressure-correction method for use as 
smoothers with the latter applicable to all speeds. All the last three references employed a fixed 
V-cycle. 

In most of the above efforts, a single relaxation scheme has been used as a smoothing operator 
in a chosen multigrid cycle and applied to one or more problems in order to demonstrate the 
characteristics of the flow solver. This does not provide much guidance in the choice of smoother 
or multigrid cycle for the developer of a solver for a particular application. Furthermore, among 
the above works only Brandt,' Fuchs' and Thompson and Ferziger' have addressed the need for 
highly refined grids in local regions which is present in most flow problems. The adaptive use of 
several levels of uniform local subgrids* is attractive in the multigrid context, since it adds extra 
points only where they are needed. A more conventional approach employs stretched grids which 
may make it easier to resolve thin regions of steep gradients such as boundary layers adjacent to 
solid surfaces. This raises the question, however, as to whether fast multigrid performance can be 
maintained on these grids. 

The present work considers the primitive variable formulation of the steady incompressible 
Navier-Stokes equations in Cartesian co-ordinates. Four different relaxation methods were 
employed as smoothers and embedded in a common tailored multigrid procedure. The resulting 
solvers were applied to three two-dimensional problems over a range of Reynolds numbers on 
both uniform and highly stretched grids. The results from this study are used to draw conclusions 
on the strengths and weaknesses of the individual relaxation schemes as well as those of the 
overall multigrid procedure when used as a solver on highly stretched grids. 

2. DISCRETE FORMULATION 

The steady incompressible Navier-Stokes equations in non-dimensional form are 

(1) 

(2) 

auu auv ap I a% a2u -+-=--+- -+-- 
ax ay ax Re ax2 ay2 ' 0 

a u  av 
ax ay 
-+-=0, (3) 

where u and u are the x and y velocity components, p is the pressure, and Re is the Reynolds 
number. 

These equations are discretized on a staggered grid (Figure 1) using a finite volume approach 

-R~,j~Luui,j+dyjA,pi,j=O, (4) 

where Ax, V, , Ay , Vy , are forward and backward differences in x and y, respectively, dxi = xi -xi - 1, 

dyj=yj-yj-, and 

LuUi,j=n5ui,j-a:ui-l,j-a:ui+l, j - 4 u i , j - 1 - 4 u i ,  j + l ,  (7) 

L"ui, j=agui, j-ak vi- 1, j-u: I.++ 1, j-d~i, j- 1 (8) V i ,  j+ 1 - 



NAVIER-STOKES EQUATIONS ON HIGHLY STRETCHED GRIDS 545 

0- v- 0- v- .---v-. 
I I I I 
I I I I 

I I 1 1 

I I 

I I I I 

I I 1 

U P U P U P U  

v- 0- v- 0 .- v- 0- 

U P U P U P U  

v- 0 V- .- v-- .- .- I I 

U P U P U P U  

v- 0- v- 0 V- m- 
I .- 

Figure 1. Variable locations on staggered grid 

The coefficients a" and a' are defined below. When these expressions require points outside the 
domain, such as Luui, adjacent to a horizontal boundary, these points are transferred to the 
boundary by linear extrapolation. A similar treatment is employed at an outflow boundary where 
p i ,  is specified. 

The coefficients in equations (7) and (8) are obtained from the hybrid scheme of Patankar and 
Spa1ding.l' In this approximation the convective differencing in a given direction switches from 
second-order central to first-order upwind and the viscous term is dropped whenever the 
appropriate cell Reynolds number exceeds 2. The accuracy of the scheme can be improved by 
a defect correction technique such as that employed by Thompson and Ferziger.8 The coefficients 
are first obtained for equations centred on the p i ,  locations: 

with 

c w  = ui - I. j dyj/Z 
C e = u i .  jdyj/Z 
c = v . .  s 1 . j -  1 dxiI2, 
C, = vi. jdxi/2, 

Dw= Re-' dyj/dxi, 
D, = Re-'dy,/dx;+ ', 

D,= Re-' dxi/dyg+ 
D, = Re- dxi/dy;, (1 1) 

and dx;=(dxi- +dxi)/2, dy4=(dyj- +dyj)/2. The coefficients up are stored and frozen during 
a sweep through the grid. The coefficients a" and a' are obtained by averaging. Thus, 

(a'b)i, j=C(a!)i, j+(a!)i+ 1. jI/& (4)i, j=C(aX)i. j+(a3ip j +  i lI2- 
For the convective terms, this is equivalent to obtaining the cell face velocities by averaging. For 
the viscous terms, this introduces an error on a stretched grid that is of the same order as the 
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truncation error. In the immediate vicinity of a re-entrant corner, this practice must be modified 
to ensure that the convective velocity normal to the wall is set to zero. 

3. RELAXATION METHODS 

Each of the relaxation methods employed as a multigrid smoother in this work is adapted from, 
or similar to, a known technique from the literature, and hence the descriptions of the schemes 
will be brief. The methods are written in a common block-tridiagonal form for the corrections 
along a horizontal line 

-AiAVi-1+BiAVi-CiAVi+l=Diy (12) 

where AVi is the vector of local corrections, Ai, Bi , Ci are square matrices and Di is the vector of 
local residuals. By appropriate choices of the square matrices, equation (12) can be used to 
describe both point or explicit schemes and semi-implicit or fully implicit schemes. This equation 
is now particularized for each of the methods. 

The first method, here labelled Block Gauss-Seidel (BGS), is a locally coupled explicit scheme 
introduced by Vanka.6 Four discrete momentum equations and one continuity equation are 
solved for a set of local corrections. In this case 

AVi=(Aui- 1, j, Aui, j 9 AVi. j- I 9 A0i.j- APi, jIT, 

Bi is a 5 x 5 matrix, 

Bi = 

and Ai= Ci=O. Elimination of the Au’s and Av’s gives a simple expression for Api, and back 
substitution then gives the local Au’s and Av’s. In a single sweep through the grid, each 
momentum equation is updated twice and each continuity equation once. 

The second method, labelled Pressure-linked Line Block Gauss-Seidel (PLBGS), is a locally 
coupled semi-implicit scheme which is similar to the line relaxation scheme of D e m ~ r e n . ~  This 
case is a simple extension of BGS: 

Bi is a 4 x 4 matrix obtained by eliminating the top row and left column from equation (14), and 
A,=Ci=O except for the lower left and upper right corner elements, respectively. Elimination of 
the Au’s and Av’s gives a scalar tridiagonal equation for the Ap’s along the horizontal line and 
back substitution then gives the Au’s and Av’s along the line. During a single sweep in the 
+ y-direction, each u-momentum equation is updated once, each v-momentum equation twice, 
and each continuity equation once. The fewer momentum updates and the efficiency of the scalar 
tridiagonal inversion gives a scheme that costs 15% less per sweep than BGS. In general, both 
x and y sweeps are combined in an alternating pattern to form an effective relaxation technique. 
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The third method, labelled Line Block Gauss-Seidel (LBGS), is a locally coupled, fully implicit 
scheme, which is apparently very similar to the coupled alternating line approach of Thompson 
and Ferziger.' The vectors AVi and Di and the matrix Bi are the same as for PLBGS, while Ai and 
Ci are 4 x 4  matrices having diagonal plus the lower left and upper right corner elements, 
respectively. The number of equation updates and sweeping patterns are the same as for PLBGS. 
In this case algebraic elimination in the block-tridiagonal inversion gives a scheme that costs only 
15% more per sweep than BGS. 

The final method is the Semi-Implicit Pressure-Correction scheme (SIMPLE) introduced by 
Patankar and Spalding." In this case 

where Ai, Bi, Ci are diagonal 2 x 2 matrices. The pressure is obtained from an elliptic equation 
derived by substituting reduced forms of the discrete momentum equations for coupled velocity 
and pressure corrections into continuity. For this work one SIMPLE iteration consists of a single 
scalar line Gauss-Seidel sweep for each momentum equation with the pressure fixed. This is 
followed by four alternating direction line Gauss-Seidel sweeps of the elliptic pressure-correction 
equation. Taking more than one sweep through the momentum equations before correcting the 
pressure invariably resulted in partial decoupling of the velocity components and slower conver- 
gence. Each of these combined SIMPLE iterations costs about 30% more than one sweep of 
BGS. 

For each of these relaxation techniques, some degree of underrelaxation is required to obtain 
convergence. In the present work this is implemented through direct modification of the 
momentum equations. For BGS, LBGS and SIMPLE, the diagonal velocity coefficients, u: and 
u:, in the matrix Bi are divided by a factor r,,,, where 0 < r,,, < 1. For PLBGS the residuals, R" 
and R", are multiplied by rmom. In addition, for SIMPLE the pressure corrections and the 
corresponding velocity corrections required to satisfy continuity are unrelaxed. 

Finally, we note that considerable improvement can be obtained with each of the above 
methods by employing a symmetric sweeping pattern. Thus, for BGS each lexicographic sweep is 
followed by one in the reverse direction. For PLBGS, LBGS and SIMPLE, a four sweep 
symmetric alternating line pattern is used, i.e. relaxation is performed sequentially in the + x, + y ,  
- y  and --x directions. These techniques result in an approximately 25% improvement in 
convergence rates. 

4. MULTIGRID ITERATION 

Local relaxation methods, such as those of the previous section, are in general much more 
efficient at reducing short-wavelength error components on a given grid than those of longer 
wavelength. Multigrid seeks to overcome this problem by transferring the long-wave components 
of the solution to a sequence of coarser grids where relaxation is more effective and much cheaper. 
Since the FAS-FMG (full approximation scheme-full multigrid) technique used in this work has 
been well documented in the literature,'. 4* 6-9 the present description of the multigrid process will 
be brief. The focus will, instead, be on the current implementation and in particular on those 
aspects which are important in achieving a fast robust Navier-Stokes solver. 

Introduce a sequence of grids k, where k = 1 is the coarsest and k = rn is the finest grid. On any 
grid the system of equations is represented by 

(17) L~ uk = F k, 
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where Lk is a discrete approximation to the differential operator on grid k, U k  is the vector of 
unknowns and F k  is defined below. Next define a relaxation operator S' for equation(17), 
a fine-to-coarse grid restriction operator r",+, for unknowns, a restriction operator for 
residuals, Rk = F - Lk U k ,  and a coarse-to-fine grid prolongation operator for corrections 1:' '. 
With these definitions, the FAS multigrid cycle M Ir for improving an approximation U k  is defined 
recursively as follows: 

If k = m ,  Fk is the right-hand side of the discrete system. 
If k = 1, solve equation (17) by several relaxation sweeps. 
If k > 1, do these six steps: 

(a) Relax on grid k, 
U k + ( S k ) V '  uk. 

(b) Restrict U k  to grid k-1, 
u k - 1 f: - 1 u k 

(c) Restrict Rk to grid k -  1 and form source term 
F k -  l+Lk- 1 u k -  1 + l k - I R k  

k 

(d) Perform y multigrid cycles on Uk-': 

(e) Prolong corrections to grid k, 
uk-l+-(Mk-l)y Uk-1. 

U k c  Uk+ 1:- 1 ( u k -  1 4 - 1  Uk). 

Uk+(Sk)'2Uk. 

(f) Relax on grid k, 

For y= 1, this is called a V-cycle or V(vl, vz), and for y = 2, this is called a W-cycle or W(vl, vz). 
Finally, the full FAS-FMG technique is obtained by starting the computation on a very coarse 
grid, iterating to 'convergence' with the FAS process, and interpolating the result to obtain the 
initial values on the next finest grid. In this way the first approximation on the finest grid is 
already close in much of the domain, an important consideration in non-linear problems. 
Convergence criteria for each stage in the FAS-FMG process as used in the present work are 
explained in Section 5. 
In the present work the coarse grids are created by 'standard coarsening', i.e. every second grid 

point in both x and y is deleted from one grid to the next coarser grid. The fine-to-coarse 
restriction operator f i  employs cell-face averaging for the velocities, 

~ ; , j = ( ~ i , j - i  dyj-1 +ui,jdyj)/dy,C, ui,j=(ui-l,jdxi-l +~i,jdxi)/dxS, (19) 

and full weighting for the pressures, 

Pi, j=(Pi- 1,j- 1 dxi- 1 dyj- 1 +pi- 1. j dxi- 1 dyj+pi, j- 1 dxi dyj- 1 + pi,j dxi dyj)/(d$ dy;), (20) 
where ( )= represents a coarse-grid value. The restriction operator 1% for residuals uses full 
weighting, in which all the fine-grid contributions to a coarse-grid cell are accounted for 
(Figure 2): 

(I,CR")i, j = Rr, j- 1 + R r, j + )(Rr- 1, j -  1 + Rr- 1, j + R;i 1, j- 1 + Rr+ 1, j), 

(1; R")i, j =  RY- 1, j +  RY, j + &(Ry- 1, j -  1 + Rz j -  1 + RY- 1, j +  1 + R;, j+ 1 ), 
(21) 
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Figure 2. Variable locations on fine and coarse staggered grids showing control volumes for full weighting of residuals 

where R" and R", given by equation (4) and (9, are already area-weighted. With the cell-face 
averaging given by equation (19) and full weighting similar to equation (20) for R", as defined by 
equation (6), the coarse-grid source term of equation (18) vanishes for the continuity equation. 

In many of the previous works6* '9 9* l5 cell-face averaging was also used in the restriction of R" 
and R". For uniform grids this has little effect on the multigrid convergence rate. For the highly 
stretched grids employed in this work, this proved to be ineffective. In some cases convergence 
slowed by a factor of 3 or 4. In others, little or no benefit was gained from the multigrid process. 

The coarse-to-fine prolongation operator Z: for corrections employs bilinear interpolation in 
computational space where the grid spacing is taken to be uniform. For fine grid points adjacent 
to boundaries, zero normal gradient is assumed for pressures. The overall convergence has 
proven to be insensitive to the details of this approximation. The same operator with one 
modification is also used to interpolate 'converged' results to obtain initial values on a fine grid in 
the FMG process. The velocity component parallel to an adjacent wall is obtained by bilinear 
extrapolation from the interior, since the boundary layer is poorly resolved on the coarse grid. 

The multigrid solvers in this work have been coded to permit fixed V and W-cycles. During the 
course of this effort it was found that for the difficult cases with high Reynolds numbers or highly 
stretched grids a W(1, I)  cycle was the most effective strategy in terms of robustness and 
computational cost. Hence, all results presented in this paper were performed using this cycle. 
Accomodative cycles,1s4*6-8 which decide on whether or not to restrict to a coarser grid based on 
the ratio of errors from two successive sweeps, proved to be too costly, since the second sweep on 
each visit to a grid contributed little to the overall convergence of the method. 

The symmetric sweeping pattern described in Section 3 has been interleaved with the multigrid 
process. A sweep counter is established for every grid level and on each visit to that level the next 
direction in the sweep pattern for that grid is performed. This proved to be sufficient to give all the 
convergence benefits of the sweeping symmetry. Finally, it should be noted that varying the 
momentum relaxation factor rmom from grid to grid during the cycle provided considerable 
performance enhancement for the BGS, PLBGS and LBGS solvers. However, no benefit was 
observed when this was tried with the SIMPLE-based solver. 

5. CONVERGENCE CRITERIA 

The various convergence criteria used in this work are all based on an L2 norm of the dynamic 
velocity changes occurring during a sweep through the grid. This would seem to be a more 
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appropriate form for a system of coupled equations than one based on a combination of the 
residuals of the different equations. The pressures have been excluded, since they are only 
determined to within an arbitrary constant. Introduce the definition 

ek= /{ "F [(A~f,~)~+(Alif ,~)~]/(2n!&) 
i ,  j =  1 

where n i  and n; are the number of cells on grid k in x and y ,  respectively, and Auf, j, Avf, are the 
dynamic velocity changes obtained during a sweep on grid k. Then for a sequence of coarse- 
to-fine grids, k =  1 to m, the overall convergence criterion on grid rn is taken as 

Ern< 10-6. (23) 
In most cases at convergence given by equation (23) the value of max(Au, Au) is approximately 

For intermediate grids in the FAS-FMG process, convergence before interpolating to the 
next finer grid is taken as 

2 4 0 - 3 ,  (24) 
and for the coarsest grid, k =  1, 'solution' is given by 

E1 < 2/10, 

where now ek is the most recent error on the current finest grid. 

scalar mode. All cpu times reported in the next sections are for this machine. 
Finally, it is noted that all computations in this work were performed on an Amdahl 5980 in 

6. COMPUTATIONAL RESULTS 

Three problems have been chosen to test the performance of the multigrid solvers under different 
conditions: flow in a driven cavity, developing flow in a straight channel, and flow over an open 
cavity. 

6.1. Driven cavity pow 

The driven cavity is the prototypical recirculating flow and has long been used as a standard 
test problem for Navier-Stokes solvers. The second-order streamfunction-vorticity results of 
Ghia et are generally accepted as the standard. Flow is set up in a square cavity with three 
stationary walls and a top lid that moves to the right with constant speed (u = 1). Streamfunction 
contours for Re= 1000 and 5000 are shown in Figure 3, and u-velocities on the vertical centreline 
computed on a uniform 256 x 256 grid for the same Reynolds numbers are compared with the 
standard results4 in Figure 4. At Re = 1O00, the two computations agree within plotting accuracy. 
At Re=5000, the discrepancy is a result of the excessive dissipation of the hybrid differencing 
scheme. 

The first set of results for this flow is for a uniform grid with Re varying from 100 to 5000. 
Convergence plots of the Lz norm of the velocity changes (LzAV) vs. work units are shown in 
Figure 5 for all methods on a 256 x 256 grid where a work unit is the cpu time required for one 
fine-grid sweep of the particular smoother. In this figure each symbol on a plot represents a single 
fine-grid sweep and the horizontal offset from the origin is the initialization time on the coarser 
grids. These plots give an indication of multigrid performance that is independent of the 
differences in cpu time per sweep for each solver. On this basis all of the solvers are competitive 
but BGS and PLBGS show a small advantage. Table I compares the uniform-grid results for each 
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Figure 3. Driven cavity stream function contours for Re = lo00 and So00 
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Figure 4. Driven cavity u-velocities on vertical centreline computed on a uniform 256 x 256 grid for Re= lo00 and 5000 
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Figure 5. Driven cavity convergence histories for all methods on a uniform 256 x 256 grid 
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Table I. Driven cavity convergence on uniform grids for AR = 1 

Re 

Scheme ( rS , , , )  100 400 1000 3200 5000 
(cpu seconds/fine-grid sweeps/work units) 

BGS (0.7) 

PLBGS (0.8) 

LBGS (0.8) 

SIMPLE (0.7) 

BGS (0.7) 

PLBGS (0.8) 

LBGS (0.3) 

SIMPLE (0.7) 

31.9 
8 

22.5 

34.8 
10 
28.8 

36.8 
9 

22.6 

58.0 
12 
31.6 

128.0 
8 

22.2 

1 14.0 
8 

22-9 

141.9 
8 

21.4 

217.1 
11 
24.9 

128 x 128 grid-6 levels 
35.5 49.0 73.7 
9 12 18 

25.0 34.5 51.4 

35.4 51.0 78.8 
10 15 23 
29.0 42.1 64.6 

45.4 69.8 105.6 
10 16 24 
28.1 43.2 65.0 

58-9 77.5 134.0 
12 16 28 
31.9 42.2 72.8 

256 x 256 grid - 
130.5 131-2 

8 8 
22.6 22.7 

119.7 123.9 
9 9 

23-9 24.6 

144.5 178.6 
8 10 

21.7 27-0 

2 18.6 250 1 
11 12 
25.1 28.6 

7 levels 
259-4 

16 
44.9 

262-2 
19 
52.9 

389.7 
23 
59.3 

414.6 
20 
47.5 

104.1 
26 
73.0 

97.7 
28 
80.0 

11543 
27 
71.4 

1792 
38 
97.1 

294.1 
18 
50.2 

263-1 
19 
527 

423.8 
24 
64-4 

491.4 
24 
56.3 

solver on two grids in terms of cpu times, number of fine-grid sweeps and total work units for each 
case. Here r20m is the fine-grid relaxation factor for the solver. As the Reynolds number increases 
and the grid is made finer, the table indicates a significant advantage for BGS and PLBGS over 
LBGS and SIMPLE due to faster convergence and less cost per sweep. Also note that fewer 
sweeps are needed on the finer grid for all methods. 

The second set of results is obtained for Re= lo00 on a grid with hyperbolic tangent stretching 
in x and y and the maximum mesh aspect ratio (AR) varying from 1 to 40. The grid for AR = 10 is 
shown in Figure 6. Convergence plots for all methods on a 256 x 256 grid are shown in Figure 7. 
For this case it is seen that BGS and SIMPLE show substantially better multigrid performance 
than the other two solvers. Table I1 compares the stretched-grid results for each solver on two 
grid sizes. As AR is increased to large values and the number of grid points is increased, BGS is 
seen to have a significant advantage over the other three methods in both number of sweeps and 
cpu time. The use of highly stretched grids produces a strong asymmetry in the momentum 



Table 11. Driven cavity convergence on stretched grids for Re= loo0 

AR 

Scheme (rzom) 1 5 10 20 40 
(cu seconds/fine-grid sweeps/work units) 

BGS (0.6) 

PLBGS (05) 

LBGS (0.9) 

SIMPLE (0.7) 

BGS (0.6) 

PLBGS (05) 

LBGS (09) 

SIMPLE (0.7) 

55.8 
14 
39.6 
63.6 
19 
525 
794 
19 
48.9 
78.5 
16 
4 2  1 

1601 
10 
27.8 

171.1 
12 
34.2 

145.9 
8 

22.0 

248.2 
12 
285 

128 x 128 grid - 6 levels 
56.6 64.1 77.0 
14 16 20 
39.7 44.7 54.0 
55.6 63.3 76.3 
16 19 23 
455 51.7 62.6 

95.1 94.7 101.5 
23 23 24 
57.7 57.6 61.5 
806 80.10 89.3 
17 17 18 
42.7 42.8 46.6 

256 x 256 grid -- 7 levels 
162.2 163.1 193.2 
10 10 12 
27.9 27.9 32.8 

171.3 198.6 25 1.1 
12 14 18 
33-9 39.3 49-9 

185.4 2522 352.8 
11 15 21 
27.5 37.4 52.2 

221.0 222.0 25 1.4 
11 11 12 
25.3 253 28.5 

84.3 
22 
59.3 
77.1 
23 
62.6 

111.5 
27 
67-4 

96.1 
20 
51.4 

191.3 
12 
3 2.9 

284.9 
21 
56.3 

490.9 
29 
72,2 

290.8 
14 
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Figure 6. Driven cavity stretched grid with AR = 10 
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equation coupling coefficients [equations (9)] in regions of high mesh aspect ratio and this was 
expected to adversely affect the smoothing properties of an explicit scheme' such as BGS. The 
alternating direction semi-implicit and fully implicit schemes were introduced to see if they would 
give more robust performance for these cases. This proved not to be true for the Navier-Stokes 
solvers used in this study. 

6.2. Developing channel pow 

The second test problem is the deceptively simple one of developing flow in a straight channel 
one unit high and four units long. Uniform velocities (u = 1, u =0) are specified at the entrance and 
a constant pressure ( p = O )  is set a t  the exit. Note, for incompressible flow, the common exit 
condition, au/dx =0, implies i3u/ay = dp/ay = 0. Profiles of u vs. y along the channel for Re = 1000 
and 5000 are shown in Figure 8. For these Reynolds numbers, the flow is far from fully developed 
at the exit. This flow has velocities strongly aligned with the x-direction over much of the domain 
and the u-momentum equation becomes increasingly decoupled in y away from the walls as Re is 
increased. This situation is known to cause problems for multigrid solvers (see e.g. References 1 
and 16) and, thus, was chosen as a fitting test case for this study. 

The first set of results is for a uniform grid with Re again varying from 100 to 5000. 
Convergence plots of LzAV vs. work units for all methods on a 256 x 64 grid are shown in 
Figure 9. It is evident that the multigrid performance of all the solvers degrades more rapidly with 
increasing Re than was the case for the driven cavity with SIMPLE falling off much more than the 
others. The uniform-grid results for each solver on two grids are compared in Table 111 and 
confirm those shown by Figure 9 when both fine-grid sweeps and cpu time are considered. The 
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Figure 8. Developing channel u-velocity profiles for Re= lo00 and 5000 
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Table 111. Developing channel convergence on uniform grids for AR = 1 

Re 

Scheme (rfno,,,) 100 400 lo00 3200 SO00 
(cpu seconds/fine-grid sweeps/work units) 

BGS (0.7) 

PLBGS (0.8) 

LBGS (0.8) 

SIMPLE (07) 

BGS (0.7) 

PLBGS (08) 

LBGS (0.8) 

SIMPLE (0.7) 

103 
10 
27.2 
9 5  

11 
29.8 
11.4 
10 
27.1 

16.9 
14 
3 6  1 

42.5 
10 
28.0 

369 
10 
28- 1 
45.3 
10 
26.3 

60.0 
12 
31-7 

128 x 32 grid- 4 levels 
16.5 24.4 46.3 
16 24 48 
43.5 64.8 122.2 
15.1 24.4 41.0 
16 28 48 
47.2 75.4 126.9 
18.2 262 32.9 
16 24 32 
43.0 61.6 78.2 
28.7 505 84.9 
24 44 80 
60.9 107.5 181.7 

256 x 64 grid - 5 levels 
44.0 66.6 1291 
10 16 32 
28.5 44.2 85.4 
40.8 59.7 11 8.2 
11 16 32 
30.9 45.4 89-9 

49.9 73-2 144.1 
11 16 32 
28.9 42.4 83.3 

79.3 120.5 264.1 
16 24 56 
41.6 63.6 139-9 

53.1 
58 

140.4 
50.2 
60 

155.7 
41.3 
40 
97.0 
93.4 
88 

198.4 

2064 
52 

135.4 
141.7 
40 

1080 

177.7 
40 

102.3 
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76 

184.5 
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Figure 10. Developing channel stretched grid with AR = 10 
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relatively poor performance of SIMPLE is probably due to the partial decoupling between u and 
u at high Re which was observed during the iterative process. However, note that all methods still 
converged in under 100 fine-grid sweeps even at the highest Reynolds numbers. 

The second set of results for this flow is for hyperbolic tangent stretching in y only, again with 
AR varying from 1 to 40 and Re = 1OOO. The grid for AR = 10 is shown in Figure 10. Convergence 
plots for all methods on a 256 x 64 grid are shown in Figure 11. Here it is obvious that LBGS 
shows markedly better multigrid performance than the other methods. Stretched-grid results for 
each solver on two grid sizes are compared in Table IV. As AR is increased to large values for 
each grid size, it is evident that LBGS has a major advantage over the other smoothers in both 
fine-grid sweeps and cpu time. This case of strong alignment on a stretched grid is the only one in 
which an implicit scheme (LBGS) has a substantial advantage over the explicit BGS. 

Table IV. Developing channel convergence on stretched grids for Re= lo00 

AR 

Scheme (r$om) 1 5 10 20 40 
(cpu secondslfine-grid sweepslwork units) 

BGS (0.7) 

PLBGS (0.7) 

LBGS (0.85) 

SIMPLE (0.7) 

BGS (07) 

PLBGS (0.7) 

LBGS (0.85) 

SIMPLE (0.7) 

24-6 
24 
64.6 
3 1-0 
36 
96.0 
30.1 
28 
71.0 

50.4 
44 

107-2 

66.9 
16 
44.2 
73-7 
20 
55.7 

73.3 
16 
42.4 

119.9 
24 
63.6 

50.6 
54 

131-3 
34.0 
40 

103.2 
21-8 
20 
50.4 

128 x 32 grid-4 levels 
55.4 
58 

144.2 
41.0 
48 

125.5 
2 1-8 
20 
50-8 

48-7 
50 

126.4 
44-9 
52 

137.9 

22-0 
20 
51.1 

49.1 62.3 70-7 
44 56 64 

103.7 130.8 148.9 

256 x 64 grid - 5 levels 
89-6 
22 
58.3 
72.3 
20 
53.8 
46.8 
10 
26.7 
97.8 
20 
50.8 

122.6 
30 
78.7 
95.5 
27 
7 1.0 
64.2 
14 
36.3 

114.5 
24 
59.6 

198.8 
50 

128.8 
114.4 
32 
85.7 

657 
14 
37.4 

134.4 
28 
70.0 

41.9 
42 

108.5 
55.3 
64 

1704 
23.1 
20 
53.4 
70-7 
64 

148.8 

177.1 
44 

113.9 
167.3 
47 

125.4 
75.5 
16 
42.7 

209.2 
44 

107.7 
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6.3. Open cavityflow 

The final test problem combines the driven cavity and developing channel flows and adds the 
complication of a strong corner singularity. The domain consists of a channel one unit high and 
two units long on the top of an open cavity one unit square located at the left boundary. Uniform 
flow (u = 1, u =0) enters the channel at the left and exits at the right ( p  = 0). Streamfunction and 
vorticity contours for Re=1000 are shown in Figure 12. Note the lack of separation and the 
strong concentration of vorticity contours at the downstream corner. 

As before the first set of results is for a uniform grid with Re varying from 100 to 5000. 
Convergence plots of LzAV vs. work units for all methods on a 128 x 128+256 x 128 grid are 
shown in Figure 13. As was the case with the channel flow the multigrid performance of SIMPLE 
is seen to degrade more rapidly than that of the other methods as Re is increased. The 
uniform-grid results for each solver on two grids are compared in Table V. The results for 
fine-grid sweeps and cpu time confirm that BGS, PLBGS and LBGS remain competitive as 
Reynolds number is increased but SIMPLE suffers a substantial penalty. 

The second set of results for this flow is for hyperbolic tangent stretching in both x and y, in 
each of three square regions, with AR varying from 1 to 40 and Re = 1000. The grid for AR = 10 is 
shown in Figure 14. Convergence plots for all methods on a 128 x 128 -k 256 x 128 grid are shown 
in Figure 15. In this case, BGS shows a small advantage over the other methods in multigrid 
performance. The stretched-grid results for each solver on two grid sizes are compared in 
Table VI. Here it is evident that BGS has a significant advantage in fine-grid sweeps and cpu time 
as AR increases. It should also be noted that PLBGS and LBGS appeared to be more sensitive to 
the presence of the corner singularity and to the choice of I,,, for the set of grids used in the 
multigrid process. However, no detailed study of this effect was performed. 
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Figure 12. Open cavity stream function (left) and vorticity (right) contours for Re= loo0 
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Table V. Open cavity convergence on uniform grids for AR = 1 

Re 

Scheme (rzom) 100 400 1000 3200 5000 
(cpu seconds/fine-grid sweeps/work units) 

BGS (0-7) 

PLBGS (0.8) 

LBGS (0.8) 

SIMPLE (0.7) 

BGS (0.7) 

PLBGS (0.8) 

LBGS (0.8) 

SIMPLE (0.7) 

64 x 64 + 128 x 64 grid - 5 levels 
34.2 35.4 48.8 108.1 
10 10 14 32 
28-1 29.0 40-3 88-5 

29.7 32.9 48.3 92.6 
10 11 16 32 
28.7 3 1.6 464 89.6 

35-8 45.3 59-3 101.3 
10 12 16 28 
265 33.4 43-9 15.6 

47.6 62.6 95.1 193.7 
12 16 24 52 
31.2 41.7 62.9 127.9 

128 x 128 + 256 x 128 grid - 6 levels 
1 15.9 116.7 144.2 241.2 

8 8 10 16 
21.6 21.8 27.1 44.9 

102.5 127.9 129.1 233.4 
8 10 10 19 

22.0 27.5 27.7 50.3 

123.1 125.9 167-4 305.4 
8 8 11 20 

21-0 21-3 28.5 52.4 

179.7 209.8 279.7 486.2 
11 12 16 28 
25.5 29.9 39.6 68.7 

134.9 
40 

1100 

118.1 
40 

113.5 

124.1 
35 
92.5 

253.8 
68 

167.0 

355.9 
24 
66.4 

304.7 
24 
65.4 

311.9 
24 
64.6 
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40 
96.1 
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Figure 14. Open cavity stretched grid with AR = 10 



564 

aOOlOmO: 

QQooKm- 

onQmOo1 

-0- 

Qwoom(- 

PETER M. SOCKOL 

A R - 1  
- 5  - 10 
-20 
-40 

BGS 

A v  -' 
A R - 1  

5 - 10 
-20 
-40 

- 

0 60 100 

work units 

LBGS 

A R - 1  
5 - 10 

-20 
-40 

m 

o#toooo- 

a m -  

Qo#DIIo- 

QOOOOOlO: 

Qom#o1- . , . ,  
0 50 HK) 

work units 

SIMPLE 

AR - 1  
- 5  - 10 
-20 
-40 

a0000#n 

0 so 100 

work units 
Figure 15. Open cavity convergence histories for all methods on a stretched 128 x 128 +256 x 128 grid 



NAVIER-STOKES EQUATIONS ON HIGHLY STRETCHED GRIDS 565 

Table VI. Open cavity convergence on stretched grids for Re= lo00 

AR 

Scheme (rzOm) 1 5 10 20 40 
(cpu seconds/fine-grid sweeps/work units) 

BGS (0.7) 

PLBGS (0.5) 

LBGS (0.85) 

SIMPLE (07) 

BGS (0-7) 

PLBGS (0.5) 

LBGS (0.95) 

SIMPLE (0.7) 

48.8 
14 
40.2 
90.8 
32 
88.1 
59.0 
16 
43-8 
95.4 
24 
63-0 

145-3 
10 
27.1 

250.8 
20 
53.9 

1615 
10 
27.6 

278.1 
16 
39.7 

64 x 64 + 128 x 64 grid-5 levels 
408 47.3 59.9 
12 14 18 
33.1 38.3 48.8 

46.9 47.2 58.3 
16 16 20 
45.2 45.8 56.1 
53.5 52.4 64.7 
15 15 18 
3 9  1 38.3 47-2 

640 63.7 77.4 
16 16 20 
42-2 41.9 50.8 

128 x 128 + 256 x 128 grid - 6 levels 
143-7 144.9 145-0 
10 10 10 
26.7 26.8 26.9 

153-9 157.0 181.7 
12 13 15 
32.9 33.7 39.0 

162.3 161.2 219-5 
11 11 15 
27,4 27.2 37 1 

208.0 207.6 208-0 
12 12 12 
29.5 29.5 29.5 

67.2 
20 
54.7 

79.1 
28 
76.8 
65.7 
19 
48.1 
91.3 
24 
59.8 

17 3-4 
12 
32.1 

206.9 
17 
44.1 

2193 
15 
37.0 

272-1 
16 
38.5 

7. CONCLUSIONS 

From the above results, it is evident that a proper combination of tailored multigrid elements can 
yield a fast robust solver for the steady incompressible Navier-Stokes equations even on highly 
stretched grids. In particular, for fine-to-coarse restriction of residuals, the use of full weighting is 
important on stretched grids. For coarse-to-fine prolongation of corrections, on the other hand, 
bilinear interpolation works well and is insensitive to the details of the boundary treatment. 
Finally, a fixed W(1, 1) multigrid cycle appears to offer a good mix of robustness and computa- 
tional efficiency. 

For recirculating flows such as the driven cavity, all four smoothers are effective and competi- 
tive. On uniform grids BGS and PLBGS offer a significant advantage over LBGS and SIMPLE, 
primarily due to less cost per sweep. On stretched grids, BGS and SIMPLE show superior 
multigrid performance but BGS is substantially cheeper per sweep. 



566 PETER M. SOCKOL 

For strongly aligned flows such as that in a developing channel, all four solvers degrade more 
rapidly with increasing Reynolds number than for recirculating flows with SIMPLE falling off 
much more rapidly than the others, but they all still converge in under 100 fine-grid sweeps. 
However, on highly stretched grids, LBGS offers a major advantage in both multigrid perfor- 
mance and net cpu time over the other three smoothers. This is the only case in which an implicit 
scheme is distinctly superior to the explicit BGS. 

For mixed recirculating/aiigned flows such as the open cavity, all four smoothers are effective. 
On uniform grids, SIMPLE again degrades much more rapidly than the others with increasing 
Reynolds number. On stretched grids BGS offers a small advantage in multigrid performance, but 
this becomes significant when net cpu time is considered. It is also notable that BGS is less 
sensitive than the other smoothers to the corner singularity in this flow. 

On balance, BGS offers the best mix of robustness and computational speed for all three classes 
of flows. The semi-implicit schemes PLBGS and SIMPLE offer little or no advantage and, in 
general, are less robust. The fully implicit LBGS is superior only for the case of highly aligned 
flows on stretched grids. The pressure correction scheme SIMPLE is, in general, more costly than 
the other three and degrades much more rapidly than the others with increasing Reynolds 
number. Finally, since convergence rates using the first-order hybrid scheme are so fast, improv- 
ing convective differencing from first-order upwind to second-order central by a defect correction 
procedure similar to that of Thompson and Ferziger* should be well worth the extra cost in 
increased work units for convergence. Also, for a general multigrid solver set up using domain 
decomposition, it might be highly effective to use BGS over most domains but retain the option to 
use LBGS in strongly aligned domains. 
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